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Abstract 

Tracking control of a class of nonlinear, uncertain, multi-input, multiple-output systems is 

addressed in this paper. The control system architecture uses neural networks for function ap- 

proximation, certainty equivalent control inputs to cancel plant dynamics and smoothed sliding 

mode control to insure that the trajectories remain bounded. Lyapunov analysis is used to 

derive equations for the sliding mode control, neural network training, and to show uniform 

ultimate boundedness of the closed loop system. Stability analysis results are shown for single- 

input single-output and two-input two-output systems. Results are then extended to the more 

general multiple-input multiple-output case where the number of inputs is equal to the number 

of outputs. Simple simulation examples are used to illustrate control system performance. 

1    Introduction 

The goal of this work is to apply intelligent control methods to high performance manned air- 

craft and Unmanned Air Vehicles (UAVs) [9, 21]. These systems are characterized by multiple 

input/output variables, large nonlinearities, significant uncertainties, configuration variations, and 

planform changes through decades of operation. Through all this, the control system is required to 

maintain the highest levels of performance, guarantee stability and robustness, and to meet very 

stringent reliabihty requirements.   To meet these stability and performance requirements, control 



designers typically require very accurate models. Therefore, a large amount of time and effort is 

needed to reduce the plant's dynamic model uncertainties to tolerable levels. Some research work 

has focused on reducing modeling uncertainty and associated costs by developing control system 

design methods that use available model information generated off-line to define the nominal con- 

trol system, and then use gathered data and known relationships between parameters to refine the 

control system on-line. In this way, some stability and control performance requirements can be met 

while reducing the overall system design costs [3]. 

Flight control system designs have historically relied on linear time invariant (LTI) models of the 

form 

X   =    Ax + Bu 

y   =   Cx 

where a;, y, and u are the state vector, output vector and control vector respectively. The A, or 

stability matrix is based upon stability derivatives and B, or control matrix is based upon the control 

derivatives. The C is the output matrix based on how states are combined to form outputs. 

The A and B matrices also depend on nominal air speed and air density. For this reason they can 

vary greatly from one flight condition to another, so designs are typically carried out at a number 

of points in the flight envelope and then blended together [18]. The performance of these control 

systems, which are referred to as Gain Scheduled Controllers, is dependent on the accuracy of a small 

perturbation model. Historically, gain scheduled control has worked relatively well because aircraft 

dynamics are predominantly a function of states such as Mach, altitude, and angle of attack. These 

matrices are very seldom represented as a function of the controls themselves because the controls 

respond faster than states and control effectiveness (represented by B) is predominantly independent 

of the control input, u. 

In this work, we directly address the plant nonlinearities by representing the plant using a form 

which includes nonlinear functions of the state and which is affine with respect to the control. We also 

assume that we have full-state measurement, removing the need for nonlinear observers, which makes 

the problem considerably less complicated. The resulting generic model form is well known and given 

by X = /(x) +g{x)u. A variety of approaches to control system design have been proposed to directly 

address system nonlinearities. These include feedback linearization [12], dynamic inversion [27], 

sliding mode control [14], and backstepping [16]. Feedback linearization transforms the plant into a 

linear (or partially linear) system by a suitable nonlinear state transformation and cancellation of the 

nonlinearities by feedback control. Backstepping is similar to feedback linearization, but does not 

rely on model inversion and does not require the designer to cancel helpful nonlinearities. Further, 



backstepping is able to deal with plants where certain matching conditions are not satisfied. 

Both feedback linearization and backstepping rely on cancellation of known nonhnearities. To 

address the issue of uncertainty, several techniques have been developed: (i) adaptive methods deal 

with parametric uncertainty [13, 26, 33], where the nonhnearities are assumed to be known but some 

of the parameters that multiply these nonhnearities are unknown or uncertain; (ii) robust methods 

deal with the case where known upper bounds on the unknown nonhnearities are available [1, 5] 

and therefore, they tend to be conservative, sometimes leading to high-gain feedback; (iii) robust 

adaptive methods combine parametric uncertainty and unknown nonhnearities with partially known 

bounds [24, 35]. 

The above control techniques are based on the assumption that the plant nonlinearities are either 

known or can be bounded by some known functions. In many applications, including control of high 

performance aircraft systems, some of the nonlinearities need to be approximated on-hne. This may 

be due to modehng errors during the identification/modehng phase or, quite often, due to time- 

variations in the dynamics as a result of changes in the operating conditions or due to component 

wear or damage. To address the issue of unknown nonlinearities, various control system architectures 

have incorporated neural networks as on-line approximators of unknown nonlinearities [34]. These 

control systems are often labeled connectionist, intelligent or neural. Early work in neural control 

attempted to define the role of the neural networks within the control system [20] and much of this 

work dealt largely with the role of the network, the distinction between adaptive and neural control, 

and learning paradigms [8]. While research stressing these topics justifiably continues, some have 

been driven by application requirements to stress closed-loop system stability. Such is the case with 

flight control system design. 

This stability focused work on neural control uses networks as a component in a mathematical 

fi-amework fi-om which adaptive control laws can be derived and stability guarantees can be made. 

Because networks are typically nonhnear, they are often used in combination with nonlinear control 

methods and Lyapunov analysis is commonly the stability analysis tool employed. Typically, the 

feedback control law and the adaptive law for updating the network weights are derived by utilizing 

a Lyapunov function, whose time derivative is forced to have some desirable stability properties (for 

example, negative definiteness). Therefore, the stabihty of the closed-loop system is obtained during 

the synthesis of the adaptive control laws. Examples of this type of approach, which is referred to 

as Lyapunov synthesis method, include [2, 4, 6, 7, 15, 19, 22, 23, 25, 28, 29, 32, 30, 36]. 

Most of the results in neural control based on the Lyapunov synthesis method are derived for 

systems with a single control input. The multivariable problem, especially if the control inputs 

are multiplied by unknown nonhnearities, becomes more challenging due to the couphng between 



control inputs. In this paper we present a control design approach which can be applied to a class 

of nonlinear, affine, Multiple-Input Multiple-Output (MIMO) plants with full-state measurement, 

where the number of inputs is the same as the number of outputs. The control objective is to achieve 

tracking of some desired state trajectories. An adaptive bounding technique is employed to handle 

the unknown network reconstruction error approximation [19, 25]. Sufficient stabilizability condi- 

tions on the unknown control multiplier functions are derived and both neural control components 

and sliding mode control signals are combined in proportions determined by the accuracy of the 

function approximation. The Lyapunov synthesis approach is used to derive a neural control system 

with guaranteed stability properties. 

This paper is organized as follows: We first formulate the Single-Input Single-Output (SISO) 

problem in Section 2 by showing the plant model structures to be considered, define some of the 

parameters and assumptions, and define the control structure. Analytical results are then used 

to show stability properties of the proposed scheme. A SISO example is provided in Section 3 to 

illustrate the concepts. Section 4 extends the definitions, assumptions, control architecture and 

stability analysis to a class of Two-Input Two-Output (TITO) systems and an illustrative example 

for this is shown in Section 5. The control system design is then extended to MIMO systems of 

arbitrary size in Section 6 and conclusions are stated in Section 7. 

2    Neural Control of a SISO System 

We start by considering the neural control problem for a SISO system. This illustrates some of the 

issues that arise in dealing with unknown nonlinearities multiplying the control input and provides 

a convenient framework for the extension into the MIMO domain. 

Consider the problem of tracking control for a SISO plant given by 

X = wi{x) + W2{x)u (1) 

where the measurable state variable x{t) belongs to a domain of interest fi C M, w e R is the control 

input and wi{x),W2{x) are unknown nonlinearities which are-assumed to be locally Lipschitz (to 

assure uniqueness of solutions). The control objective is to design a feedback control law such that 

x{t) follows some desired trajectory Xd{t) as closely as possible. 

It is often the case that a control designer has a rough estimate of the characteristics of the plant 

dynamics either through analytical modeling or through empirical studies. The control approach 

being used here directly allows for this type of information to be used by having wi (x), ^2(2;) each be 

composed of a known part and by an unknown part [23, 25]. However, for notational simplification, 

in this paper the functions in equation (1) are assumed to be completely unknown. 



Since wi{x) and W2ix) are unknown, they are approximated for use in the control system.  In 

this work we use hnearly parameterized approximators of the form 

mix) = el^^ix)     for? = 1,2 (2) 

where wi(a;) and W2ix) are estimates of the unknown functions, 9wi,^w2 S K™ are the parameter 

vector estimates and ^(x) : M i-^ M™ is a vector of strictly positive basis functions. For example. 

Radial Basis Functions (RFB) networks using Gaussian functions can be used in this framework. 

As we will see later on, the assumption that each element of £,{x) is positive is used to deal with 

a stabilizabihty problem. In general, a different set of basis functions ^u,i(a;),^u;2(a;) could be used 

in approximating Wi{x) and W2{x) respectively. However, in order to simphfy the notation (and 

without any loss of generality) we let ^(a;) = ^wii^:) = ^W2(^)- 

For each i = 1,2 the best approximation for Wi{x) is defined as 

<(^) = CT^(^)   for i = 1,2 (3) 

where O^j. denotes the parameter vector that minimizes the difference between Wi{x) and 0'^.^{x) 

for all x in the domain of interest, Jl, i.e., 

91^ = arg ^ mm^{sup \wi{x) - el^i{x)\] (4) 

and 

'"I        "0„ieK">-^gh' 

e*   = arg    min   {sup \w2{x) - CC(a:)|} (5) 
e„2G©«.2   xGQ 

where 6u,2 C E™ is the set of all 6^2 which lie within parameter bounds defined later. We use these 

best possible parameters given by equations (4) and (5) to define the parameter vector estimation 

errors as 

K,=K,-9l, for i = 1,2. (6) 

It is-important to note that unless the actual functions, Wi(a;),-are linear combinations of the ^(a;) 

basis functions, there will be some residual errors remaining in each approximation even if the best 

6wi vector is used. In this work, bounds on the approximation errors of Wi{x) are addressed using 

an adaptive bounding method while mix) has fixed bounds to insure well-defined controls. 

The error which remains after the best fit has been achieved is referred to as the reconstruction 

error and is given by 

5wiix) = Wiix)-w*ix). (7) 



The reconstruction error 5„,,(a;) is an important quantity in neural control design methods since 

it provides a measure of how close an approximation can be achieved by a given neural network 

architecture. In general, as the number of nodes in the network increase, the reconstruction error 

becomes smaller. In the limit, as the number of nodes becomes infinitely large (and centers are 

appropriately placed), the universal approximation theorem states that the reconstruction error 

converges to zero (over a compact domain) [10]. Unfortunately, universal approximation results are 

relevant only if the number of nodes start becoming very large. Therefore, nonzero reconstruction 

error is something that needs to be dealt with in practical applications. In this work, we define an 

upper bound (which is assumed to be unknown) on the magnitude of Sy,. (x) as given by 

Ki = sup\5^,ix)\. (8) 

In the approximation of wi{x), the necessity to assume a priori knowledge of a bound on the 

reconstruction error is removed by developing an adaptive bounding scheme where the bound on 

(5u,i (x) is estimated on-line. We define this estimate of the reconstruction error bound as ip^^ (t), 

and the bounding estimation error, •ip^^ (t), which will be used in the stability analysis is defined as 

^»i(0 = ^t.,(f)-Cr (9) 

where -ip^^ = max {rp^^, V'",} and V2,, is a design parameter that will appear in the adaptation law 

for updating V'tui(i)- 

Next, we define the tra<;king error, e{t) = x{t) - Xd{t), which is used to obtain the sliding mode 

scalar, s, where 

sit) = e{t) + c [ e{T)dT, (10) 

and where c is a positive design constant. As we will see later on, s{t) is used to generate the 

feedback control law, as well as the adaptive laws for updating the network weights. By defining the 

shding mode quantity in this way, we obtain a filtered error which induces integral control action 

[17, 31]. 

The parameter vectors, 6^^ and 6^^, and the adaptive bound, ip^^^, are updated according to the 

following adaptive laws: 

Om     =     7K-^(^«;, -C,)} (11) 

e^j^    =    7ws^ (12) 

i^w,    =    7{stanh(^)-CT(^„,-V°,)} (13) 

where (9° ^ and tp^^, are design parameters (representing a priori estimates of the unknown network 

parameters and adaptive bound) and CT > 0 is a leakage constant used in the framework of the a- 

modification [11] to prevent the parameter estimates from exhibiting parameter drift. The constant 



7 > 0 denotes the adaptation gain, and the e > 0 is a small design constant used to smooth out the 

sign function by converting it into a hyperbolic function (tanh). As shown in the subsequent analysis, 

these update laws are derived based on the Lyapunov synthesis approach to maintain stability and 

prevent parameter drift. 

The network reconstruction error associated with the Wiix) function is treated differently than 

the one associated with the wi(x). Typically, there is more a priori information about the range of 

possible values for W2{x). Furthermore, the adaptive bounding technique developed for Wi{x) (by 

the use of the adaptive parameter ipwAt)) cannot be directly appHed to the case of W2{x) due to a 

stabilizability problem. Therefore, it is assumed that upper and lower bounds on w^ix) are available 

such that uJ2(a;) > wj2(a;) > ^2(0;) > 0 Va; £ fJ. These upper and lower bounds are chosen such that 

there exist parameter vectors 6^^ and 6^^ satisfying W2{x) = 0^^^{x) and W2{x) = 9l,^^{x). The 

parameter vectors 6^2 > fiuia ^^^ *h^" "^^'^ *° bound the parameter estimate vector Ou,^ ■ It is worth 

noting that this approach can also be applied to systems where ^2(2;) < 0 Va; € fi by changing the 

input sign convention. 

Using the previously defined quantities, we are now ready to define the feedback control signal 

(14) 

where Ua is defined as 

Ua = Xd-ce-ks- e'^^i - ipwi tanh(-) (15) 

and Jt is a positive design constant. As we will see later, the adaptive law for 0^,^ will be modified 

to ensure that the denominator of the control equation is bounded away from zero. 

We begin the stabihty analysis by defining the Lyapunov function as 

112 

v{s, e^,, Vi^x) = 2«' + 2:^ E ^"-.^~-^ + 2:^^-1 (1^) 

where s is given by equation (10), '4>wi{t) is given by equation (9), and ^^. is given by equation (6). 

Taking the derivative of V with respect to time, substituting for s and adding a zero sum term we 

get 

1   2   _    . 1 _     . 
V     =     s{wi+W2U-Xd + Ce + {Ua~Ua)} + -'^0l.ew, + --4)w^1pwi- (17) 



Substituting (15) and (7) into (17) we get 

1     ^ 

'*'   i=l 

=    -fcs^ + s{6^, - ^^, ? + {W2U -Ua)- iprv: tanh(-)} 

T £t 

Then by using rp^,^ to bound 6yj^ and using equation (9) we can obtain an upper bound on K as 

follows: 

1      2    _      . 

+ -iY.^li^^i+^rv,1pwA- (19) 
'    i=l 

To bound the terms involving ipl^^, we use a property of the hyperbolic tangent [23] according to 

which for any z/ e K and any constant e > 0 

0< |i/|-i/tanh(-) <«£ (20) 

where K = 0.2786. 

By using equations (11), (13) and (20) in (19), we can write the inequaUty as 

V    <    -ks^ + Ker^^ - ai>^, {^^, - C) - (^Ol^ K. - C) + s{w2U - Ua)} 

+ -K,^w,. (21) 

Since the denominator of the control law described by (14) will be designed such that it remains 

positive for all f > 0, it can be readily concluded that sgn{uas) = sgn{us). Now, by substituting 

(14) into (21), we obtain 

V    <    -fcs2+K€<-(TV;„,(^„,-C,)-(T^J,(e^^-CJ 

+su{w2 - [C,? + C. sgn(us)]} + Ul^e^, 
1 

Now using equation (12) and knowing that ^;;^ > 6^^ we arrive at a bound on the Lyapunov 

derivative given by 

V    <    -fcs^+KeV^;,-^{^«..(V'u„-CJ + <(^»:-^^J}. (23) 



By completing the squares it can be shown that 

^{i>^,^v:, + (V't., - CJCV'^.: - O - « - CJ(C. - CJ}- (24) 

Because {0^, - e%^f{e^, - ^^ J > 0 and (V-^^ - d)(V't«i - CJ > 0, equation (24) imphes that 

We would like to be able to make stabihty conclusions about the system by putting the system into 

the form of 

V < -hV + A (26) 

where 6 e M+ and A is a group of constant terms. To satisfy (26) it suffices to insure that 

-ks^ + Kcr^^ - ^elj^, +1{(^;, - 0^(C, - C)} - ^i>l,i>^^ 

+|{(C. - V-" J^(C. - CJ}    <    -^s' - ^el,K, - ^i>^,^n,, + A    (27) 

where we define 

6    <    min{2A;,cT7} (28) 

A    =    «eC,+|{(C-CJ^(C-CJ + (C.-CJ(C,-CJ}- (29) 

Prom (26), we can see that V is not negative definite (nor negative semi-definite). Therefore asymp- 

totic convergence cannot be concluded. However, for bounded A, the solution, V, can be shown to 

be uniformly ultimately bounded (u.u.b). 

The solution to inequality (26) satisfies 

Jo 

e -bt W-^) + ^. (30) 

Therefore, using equation (16) and (30) we obtain that for any p > J^ there exits a T such that 

for all t>T, the variable s in the Lyapunov equation satisfies 

\sit)\<p. (31) 

This imphes that the components of V are also u.u.b. The bound given by (31) also imphes that the 

tracking error is bounded as shown below. Define u){t) = /Q e{T)dT. Using this we can write (25) as 

d) = —cuj + s. (32) 



Gw2i   =   " 

Since equation (32) represents a linear system driven by a bounded input, s, we know that the state, 

e, is bounded also. Thus, we have uniformly ultimately bounded tracking error. 

We now address the well-definedness of the control by restricting the adaptation law of the 

parameter which multiplies the control signal. In order to insure that the control u{t) remains 

bounded, the denominator in equation (14) must be bounded away from zero. We insure this by 

forcing 6^^ such that ^^^^ > \rl>l,^\. Since we know that the approximation of W2 is bounded from 

below by w^ix), we require u;2 > \5w^\. Therefore, to insure bounded control we impose the hmits 

on the approximation, turning off the update of the parameter vector elements if the update would 

drive them below 6^^. where j refers to the f^ element of the parameter vector. Since we have also 

assumed an upper bound on the true functions, we turn off the parameter updates if the update 

would drive them above 6^,^.. Since this will leave additional terms in the Lyapunov derivative, we 

must consider the stability impact. 

To impose these bounds on the parameter elements, we now modify the parameter rule given in 

equation (12). Each element of the parameter vector is now updated according to 

0 if   {(9„,. < e^^.    and   75^^^- < 0} 

0 if   {en,2i ^ '^v,2j    and   -ysuij > 0} (33) 

7sufj otherwise. 

Elements of the parameter vector, ^^^. that are updated using the nominal parameter update equa- 

tion, (12), will not leave residual terms in the Lyapunov derivative. However, those elements of the 

parameter vector that have their update zeroed, leave terms in the Lyapunov derivative that must 

be considered. 

Let us designate the elements in the parameter vector that would violate their upper bound if 

updated according to (12) as e■u,2^. Let us assume that these parameter elements are q in number. 

Similarly, we define those parameter elements that would violate their lower bounds by using (12) as 

6w2i a"^ assume that these are r in number. Thus, the terms that would be added to the Lyapunov 

derivative due to the zeroing of the parameter updates would have the form 

1 T 

- X] ^»2i «"^i - X] ^■^■^j ^^^J ■ (34) 

The first term of (34) can be written as 

-J2i6w,> - Oljsu^i. (35) 

Since we know that the O^i^. is at the upper limit of the i"* element of the parameter, 6^.^ , and the 

optimal value, 6^,^^, is below the maximum value; we can conclude that {0^^. - e^^^.) > 0. Also, 

10 



since we know that the nominal update for dw^^ is increasing, 7 > 0, and because ^{x) > 0 Va;, then 

we know that us > 0. Thus, we know that the first term of (34) is negative, and therefore, does not 

de-stabiUze the system. 

The second term of (34) can be written as 

Here we know that the 9u,2. is at the lower limit of the i*'^ element of the parameter, 6^^ , and the 

optimal value, 6^^ , is above the minimum value; we can conclude that {6^,^, - 9^,^.) < 0. Also, since 

we know that the nominal update for 9yj^. is decreasing, 7 > 0, and because ^{x) > 0 Yx, then we 

know that us < 0. Thus, we know that the second term of (34) is negative and does not de-stabilize 

the system either. Therefore, the system tracking errors and parameter errors are guaranteed to be 

uniformly ultimately bounded and the control is bounded for all x values in the domain, fl. 

The problem we have described is tracking control for a SISO, afRnely represented model with 

parametric uncertainty due to unknown 6^^ and 9^,^, bounding uncertainty due to the unknown 

reconstruction error bounds, ip!^^, and unknown but bounded W2- The neural networks approximate 

the unknown system nonlinearities Wi, the vector sliding mode control with adaptive bounding 

insures boundedness, and the integral action improves transient response. 

3    SISO Simulation Example 

To illustrate the neural control system design, a SISO model has been defined in the form of equation 

(1) which is affine in the controls and has nonhnear characteristics. The model doesn't represent a 

physical system, but it does possess an uncertain state dependent nonlinear quantity, wi{x), and an 

uncertain control multiplier, W2, where 

wi{x)    =    2 + 0.5a; + 0.2500x^ - 0.0104x^ - 0.0078x'^ (37) 

W2    =    5. (38) 

We define the uncertainty used to bound W2 as A2 where 

A2 = 0.5. (39) 

Further, we define the domain of the state, a;, as f2 = [—5,5]. 

The desired trajectory, Xd, is given by a combination of sine waves of various frequencies, square 

waves and a saw tooth function. This trajectory provides abundant excitation for the function 

approximation in some parts of the state space. 

11 



The function approximation is performed by a linear-in-the-parameters neural network of the 

form given in equation (2). The basis functions, ^{x), are Radial Basis Functions (RBFs) consisting 

of 51 evenly spaced functions over a domain of [-5,5] with standard deviation of 0.15. 

Simulation results have been generated for the SISO plant defined above, Xd, and the control 

structure given in Section 2. To illustrate impact of learning on closed loop system performance, 

the neural networks were initialized with weights that resulted in wi{x) that was about half of the 

true function and ^2(0;) « W2{x). Closed loop tracking results are shown in Figure 1 using three 

separate five second time slices of one time history. These plots show how the tracking performance 

p 1 ff if 
— ctesired output 
--- plant output 

2 3 
seconds 

— desired output 
— plant output 

122 123 
seconds 

Figure 1: Tracking Performance 

improves as time progresses. The top plot shows sluggish performance during the start of the 

simulation where the function approximation is relatively poor. The middle plot shows that the 

performance is improved during the interval between 20 and 25 seconds due to improved function 

approximation. The bottom plot show the tracking between 120 and 125 seconds where, at that point 

in the simulation, the function approximation is very good and the traces essentially lie on top of 

each other. Thus, as time progresses, the control system learns to improve its tracking performance. 

During the 125 seconds of simulation the weights of the neural network function approximators 

adjust. This can be seen in Figure 2, which show the function approximation error for wi (left) and 

W2 (right). At the beginning of the simulation the weights associated with Wi were set to values 

that made the approximation about half of the true value of the function throughout the entire 

a; domain. To provide a valid basis for evaluation of the control system's function approximation, 

the best possible approximation for wi was found off-line using a gradient algorithm and random 

samples from the domain until the error grew very small. Thus, in Figure 2 we see the starting point 

for the simulation, the best possible approximation, and the approximation that results after 125 

seconds of simulation. It is clear that the approximation is greatly improved after the simulation 

over some of the domain. It should not be surprising that the fit is nearly identical to the initial 

approximation in regions of the domain that the state did not reach. Because of the local nature of 
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the basis functions used, the approximation will only train in regions that are visited by the state. 

6r 
— final approx. 
--  best approx. .'''"■ 

5  --- initial approx. TV        '<\ ^■^^- 

4 f V  5^ 

3 i    ^ V  • 4.51) 

2' -";^./^X^.    .,-/ ^.,' I 4 

— final approx. 
--  best approx. 
--- initial approx. 

 
J
 

'»
 

:   J   \ 
\f       y"'\ 

/ . y 
3.5 — final approx. 

--  upper limit 
--- lower limit 

0 
x Domain 

0 
X Domain 

Figure 2: Function approximation of w\ (on the left) and w^ (on the right). 

In the case of W2, uncertainty bounds are imposed on the weights as shown in equation (33). This 

causes the approximation of the network to be constrained to lie within upper and lower bounding 

hmits. The uncertainty bound given by equation (39) implies that the value of W2 should remain 

between 4.5 and 5.5 for all values of x. However, to place bounds on the approximation here we use 

the hest approximation of the upper and lower bounds to provide upper and lower bounds for ^^^. 

Figure 2 (right) shows the results of the Wi approximation. The best approximation of the 

upper and lower bounds are shown as dashed and dash-dot hues while the approximation after the 

simulation is complete is shown by the solid hne. The simulation is initiahzed with the Ow^ = ^^2 • ^'^'" 

this reason, approximation at the end of the simulation is nearly identical to the best approximation 

of the lower bound in regions of the domain not visited. 

It is clear from Figure 2 that the approximations improve greatly during the course of the 

simulation. This is largely the cause of the improved tracking shown in Figure 1. 

4    Two-Input Two-Output Control Design 

In many systems, including control of high performance aircraft systems, it is common to have 

multiple control inputs affecting the state variables. One of the approaches for handling such systems 

is to use decoupling methods for isolating the effect of a control input on a measured output. 

However, such methods require that the designer know a priori the dynamics of the system such that 

coupling between control inputs can be cancelled (or minimized). The problem becomes considerably 
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more difficult if the system is nonlinear and some of these nonlinearities are unknown. A key challenge 

is to handle unknown nonlinearities multiplying the control inputs. In this section, we design a 

neural control scheme for a two-input two-output system and analyze the stability properties of the 

closed-loop system. 

We formulate the two-input two-output (TITO) problem as an extension of the SISO problem 

and consider the problem of tracking control for a TITO plant with full state measurement. The 

state vector is defined as X, where X = [x z]'^, where x and z are the states, (a;, z)eQ.<Z R^, and 

n is a domain of interest. The control vector is defined as U, where U =[u vY and u and v are the 

control inputs. The plant dynamics for the system are written as 

X = WA + WBU 

where WA is a vector of functions, WB is a matrix of functions and they are given by 

WA 
wi{x,z) 

W2{X,Z) 
and    WB = 

W3{x,z)   W4{x,z) 

W5{x,z)   we{x,z) 

(40) 

(41) 

The functions, Wi{x,z) for i = 1,... ,6, are assumed to be unknown and the system represented by 

equation (40) is assumed to be stabilizable. The control system objective is to use the control inputs 

signals, u and v, to make the states, x and z, track externally provided desired reference trajectories, 

Xd and Zd, respectively. 

The unknown functions and their associated uncertainties are defined for the TITO system in a 

manner similar to what was used for the SISO system. Each of the unknown functions is modeled 

using a Unearly parameterized combination of basis functions: 

Wi{x,z) = eZ.^{x,z)   fori=l,...,6 (42) 

where ^(a;, z) is the m x 1 vector of basis functions and 9^, are the m x 1 parameter vectors, similar 

to those defined in equation (2) for the SISO formulation. Just as the true functions, Wi, were used 

to define vector and matrix quantities in (41), function approximations Wi are used to define WA 

and WB- 

The best parameter vector and best approximation for each unknown function are defined ac- 

cording to equations (43) and (44) respectively. 

C<    =    arg   min  {  sup   \wi{x,z) - el.i{x,z)\} 

w*{x,z) = e*j:ax,z) 

The reconstruction errors are given by 

Swi {x,z)    =   Wi {x,z) - w* {x, z) 

(43) 

(44) 

(45) 
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and for wi and W2 we define the reconstruction error bounds on equation (45) as tpl,. where 

r^o,    =      sup   \6^,ix,z)\. (46) 

We further define a bound, ■^j;,. = max{ip!^.,ip^.}, where ip^. is a design parameter. 

In the following neural control design, the reconstruction error is addressed using an adaptive 

bound for Wi and ■W2. However, the reconstruction errors in the approximations of the functions 

which multiply the control inputs are dealt with differently. These reconstruction errors, 5i for 

i = 3,..., 6, are defined as 

W3{x,z)u = 9f-'^{x)u + 53{x,z,u) 

W4{x,z)v = ei''^(,{x)v + 64{x,z,v) 

W5{x,z)u = 9f^{x)u + 65{x,z,u) 

we{x,z)v = eQ'^^{x)v + Se{x,z,v). 

(47) 

(48) 

(49) 

(50) 

For these functions of the WB matrix, the reconstruction error bounds are not adaptive and are 

defined as 6^, = max |(5„. | for z = 3,..., 6 and where 5,„. is given by equation (45). 

We further assume that the functions, W3...6, are within some known bounds. These bounds are 

defined as Wi{x, z) and 'Wi{x, z) where 

Wi{x, z) < Wi{x,z) < Wi{x,z). (51) 

and where iBi{x,z) = el,.£,{x,z) and w^{x,z) = e^.i{x,z). Therefore, we impose the restriction on 

the function estimates by preventing the associated parameter vectors fi-om exceeding the upper and 

lower parameter vectors, O^i and 6_^^. 

We define the tracking errors for the x output, Cx = x - Xd, and for the z output, Sz = z - zj,- 

We then use these errors to define shding mode variables for x and z and write this as a vector of 

components 

Sx      _     Cx + Ci^Cxdr 

Sz ez+ C2 J e^dr 

where Ci and C2 are positive design constants. Using these sliding mode quantities in the control 

law induces proportional plus integral control action [17, 31]. 

The rules for updating the parameter vectors are defined similar to what was shown in Section 

2 and are given by 

(53) 

(52) 

6u 

=    7{Csx-<^(^wi-d)} 

(54) 
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and 

^1U3 =     7CSx u 

Owi =    7^Sx V 

^tUs =    7^S2 u 

61. tue =     7CS2 ■i^ 

(55) 

(56) 

(57) 

(58) 

where <T is a leakage constant and <9°, and 0°^ are design parameters.  The update rules for the 

adaptive bounds are given by 

i'w^    =    7{sx tanh(-^) - a(^^, - V'°,)} 

i^w,    =   7{sjtanh(^)-CT(V;,„,-C2)} 

where ip^^ and V'2,2 are also design parameters. 

We now write the vector of control inputs as U where 

(59) 

(60) 

U w^' (61) 
-Owi(. - ipwi tanh(^) +Xd- Cie^ - fcs^ - (^^3 + <5„Jsgn(sj:) 

-Ow2^ - ipwi tanh(^) + Zd- 026^ - ks^ - [d^,^ + 5u,„)sgn(sj) 

where A; is a positive real number. 

We insure the existence of the controls, U, by making restrictions that guarantee that W^^ is 

defined. We require that the sign of the determinant of WB remains constant over the range of 

possible variations of the function approximation and we also require that each of the elements of 

WB are sign definite. We assume that each of these elements are positive and 

M3WJ& - W4W5 > 0 w{x,z) eft (62) 

insuring that WB has a positive determinant. 

In cases where the sign of the determinant is negative or the sign of some or all of the elements of 

WB are negative, restrictions similar to (62) can be made so long as the elements are sign definite. 

Stability of the system is addressed by using Lyapunov analysis. For the TITO case, consider 

the Lyapunov function given by 

V = ts^s 
fe 27   ^27 

(63) 

where 7 > 0 is the adaptive gain, ^„. = 9^,. - 01,. for f = 1...6, and ^^. = ■0^, - ip^^, for i = 1,2. 

Taking the derivative of equation (63) and using equation (52), we get 

V    = 
CiCx - Xd 

cie-z - Zd 
^s-'iWA + WBU) + ^ ^^ + Y. 

t=l        ''' t=l,2 

■4'wi'4>u (64) 
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If we now add and subtract S^WA and S^WBU in equation (64) we obtain 

s'{ 
C2ez - Zd 

+ ^Zi 

0W2 

s + 
Own       ^Wn 

^    ^T a 

U^WA + WBU}^Y.-'^^^^T. 
i=l i=l,2 7 

(65) 

Using the reconstruction error bounds we can write equation (65) as 

V    <    s^{ 
C\Cx      ^d 

C2ez - Zd 

^Wl ?+ 

+     WA+WBU} + \si 
ru ~eTJ: 

^m^    ^wA 

' ll?5 > 1^6 - 

u 

E^+E i'wi'<Pwi (66) 
1=1 i=l,2 

where \s\ = [\sx\ \sz\V■ 
We now take the parameter update rules shown in equations (53-58) and plug them into (66) to 

obtain 

V    <    s^{ 

+    \s\ 

r- 1 r 1 r        -| 

ClCx - Xd + Owi     ^Wi 1 
+ 1 

C2ez - Zd ^tU5        ^^6 i 

- a (7 

1)2 

-6° ) 

- 6° ) 

+ WA + WBU} 

i=l,2 ' 

(67) 

The control from equation (61) is substituted into (67) to obtain 

V    <    \s\ 

+ E 
1=1,2 7 

— s 
{V'«;itanh(^) + fcs^} 

{ip^^ tanh(^) + ksz} 
a    a 

Using (20), (59) and (60) we can write (68) as 

V    <    -/cs^s + V'^jKe + V'^jKe- I  (7    a\ 

which can also be written as 
2 

V < -ksl - ksl + C,«e + i>*w.>^^ - ^E^^"'*^^™* " ^»*) + ^wMw, - CJ}- 

(68) 

(69) 

(70) 
i=l 

As was done in Section 2, we can show stability [23] where V < -aV + A, a = min(2fc, (77) and 

A = /.e(vi;, + cj + ? E{(C - C)^(C - C)} + (C. - cj' + (C. - C^)'-     (71) 
i=l 
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In the case that the parameter update equations (55-58) attempt to drive the parameter vahies 

of {Owi I i = 3,..., 6} beyond their bounds, we zero the update to the parameter. The terms left 

remaining in the Lyapunov derivative due to this zeroing are similar to those shown in (34). Corre- 

spondingly, the stability analysis that was done for the SISO case shown in Section 2 can be used to 

show zeroing parameter updates does not de-stabilize the system in the TITO case either. There- 

fore, we obtain uniform ultimate boundedness of the system tracking errors, the parameters and the 

adaptive bounds. 

5    TITO Simulation Example 

To illustrate the neural control system design, a model has been defined which is affine in the controls 

and has nonlinear characteristics. 

The model is given by 

wnix)+wi2{z) 

W2l{x) + W22iz) 
+ W3 W4{x) 

W5{x)      We 
(72) 

where 

wn{x) = 2-I-0.5a;-1-0.2500a;2-0.0104x^-0.0078a;" (73) 

wniz) = z (74) 

W2i(a;) = 5-I-X-0.48213;2-0.0357a:^-f-0.0179a;^ (75) 

^22(2) = -1.72; (76) 

u)3 = We    =    3 (77) 

W4{x) = W5{x)    =    a;/8-fl (78) 

and we define the domain of the plant state as 0 = {(x, z) | x e [-5,5], z € [-5,5]}. 

This model differs slightly from the model given by equations (40) and (41). In (72) we allow 

the wi{x,z) and W2{x,z) terms to be written as separate functions of x and z. We also write W4 

and ws as functions of x only, while W3 and we are constants. These changes simplify the function 

approximations for presentation purposes. 

The same function approximation structure is used here for the TITO example as was used for 

the SISO example. Namely, a linear-in-the-parameters neural network of the form given in equation 

(2). For the TITO case, each set of Radial Basis Functions (RBFs), ^{x) and ^(2), consists of 51 

evenly spaced functions over a domain of [-5,5] with standard deviation of 0.1. 

The desired trajectories, xj and Zd, are given by a combination of sine waves of various frequencies 

and square waves. As in the SISO simulation, these trajectories provide abundant excitation for the 
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function approximation. The magnitudes of Xd and Zd are also defined to allow the state trajectories 

to remain within fi. 

Simulation results have been generated for the TITO plant defined above, Xd and Zd, and the 

control structure given in Section 4. To illustrate the impact of learning on closed loop system 

performance, the neural networks were initialized with weight values that resulted in poor initial 

function approximations. Initial 9^1 and 9^2 parameter vectors were chosen such that Wi w 0 and 

u)2 « 0 throughout fi. The weights for Wi where i = 3,..., 6 are initialized to the worst case bounds, 

e.g., those which result in the minimum determinant of WB- Thus, the W3 and WQ approximators 

are initialized with 9^^ and 9^^ and W4 and W5 are initialized with 9^^ and 9we ■ Successful system 

performance was to be demonstrated by tracking performance improvements through time as the 

function approximators more accurately mapped the system dynamics. 

Closed loop tracking results are shown in the time histories in Figures 3. The traces on the left 

of Figure 3 show rather poor tracking for the first five seconds of the simulation. This is due to the 

fact that, initially, the function approximation outputs do not accurately represent the dynamics. 

However, after 25 seconds of simulation, tracking is substantially improved as can be seen on the 

right two plots. The improvement in the tracking of the closed-loop system is due to the improved 

function approximation that results as the simulation runs. 

3 
2 

1 1 
I o 
-1 

—3[j   desired output 
plant output 

2 3 
seconds 

— desired output 
- -   plant output 

2 3 
seconds 

27 28 
seconds 

Figure 3: On the left the initial five seconds of states x(t) and z(t) tracking the desired trajectories 

Xd and Zd; on the right, the tracking performance is shown after 25 seconds. 

The improvement in function approximation can be seen in Figures 4-5.   The approximations 
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for wi and W2 are plotted along the line a; = z in the (a;, z) plane in Figure 4. This provides 

some indication of fit over the entire domain without the complexity of surface plots with multiple 

surfaces. Figure 4 shows the function approximation after the simulation is complete, the initial 

approximation, and the best possible approximation given the structure of the approximator. It 

should be noted that although the approximations improve greatly in those regions of the (x, z) 

domain visited during the simulation, the approximation remains very near the initial value in 

regions not visited during the simulation. This is due to local nature of the RBFs. 

..-v"; 

^ycC ■ 

^^-'^^^'''^^                  ^ _ 
_--'"'   final approx. 

— Initial approx. 
 best approx. 

■ 

final approx. 
Initial approx. 
best approx. 

xez Domain Slice x=z Domain Slice 

Figure 4: Function approximation oiwi{x,z) (left) and ■W2{x,z) (right). 
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                        f.              ..-H 
^_..,.--"' /                              ''' 
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,'-''' 
'-'''    best approx. 
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 Initial approx. 
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Figure 5: Function approximation 103 and w^, (left) and Wi{x) and w^{x) (right). 

Figure 5 shows the approximation of the functions which multiply the control inputs. Since 

these functions depend only on x, these plots have x as the horizontal axis and because ^3 = w^ and 

W4 = ■u)5, only two plots are shown. These plots show the hest approximation to the upper bounds 

and lower bounds, and the approximation after the simulation has run for 30 seconds. The plots in 

Figure 5 shows good approximation of the true function value in parts of fi which are visited during 

the simulation and remain near the boundaries in other regions of Q. 
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6    Application to MIMO systems 

To this point we have only addressed SISO and TITO systems. However, the approach that has 

been apphed to the TITO problem is applicable to MIMO systems with full state output where 

the number of inputs is equal to the outputs. For such systems the equations of motion written in 

equation (40) can be written in a more general form as 

n 

X2 

i=l 
n 

i=l 

in     =     Wn,l +y^^Wn,i+\U* (79) 
i=l 

where Wi^j are functions of the states (a;i, 0:2, ...x„) and basis functions are therefore functions of all 

states. Functions would be approximated by Wi^j{xi,X2, —Xn) where 

Wij{xi,X2,.-Xn) =6jji{Xi,X2,...Xn). (80) 

An adaptive bound would be used for t&j_i and fixed bounds would be used for those functions which 

multiply the controls. The update rules would be extensions of equations (53-60), and the control, 

U = Wg^ L, would be an n-dimensional extension of equation (61), where WB would become an 

n-by-n matrix given by 

WB = 

■Wi^2{xi, ...Xn)      Wi^3{xi,...Xn) 

Wn,2ixi,...Xn)     'Wn,3{xi, ...Xn) 

and where the matrix, L, is given by 

Wl,n+liXl,...Xn) 

■Wn,n+l{xi, ...Xn) 

(81) 

L = 

+ S, i«l,n + Jsgn(s^J -^tui.i^ - ■0t«i,i tanh(^) + xi^ - CiCx, - ksx^ - {Sn,i,2 " 

-^W2,A - V'uia.i tanh(^) + ±2^ - CiCxj - kSx^ - (^«;2,2 + 1- 5«;2,„+i)sgn(Sa:J 
(82) 

-^w^A^ - V'«;„,i tanh(2£^) + Xn^ - ciex„ - ks^^ - {6^„^ +■■■+ <5u,„,„+i)sgn(sx„) 

Since the control solution given above includes Wg^, we must insure that the determinant of WB 

maintains one sign. Therefore, this matrix must be checked throughout the ranges of variations to 

insure that the sign of the determinant does not change. This approach for the MIMO case results 

in uniformly ultimately bounded stabihty just as was shown in the SISO and TITO cases. 
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7    Conclusion 

A neural control approach for a class of nonlinear systems has been developed. Lyapunov analysis 

has been used to insure bounded tracking errors and robust adaptive methods prevent parameter 

drift. Results have been illustrated with Single-Input Single-Output and Two-Input Two-Output 

plants. Also, extensions to more general Multiple-Input Multiple-Output plants has been supported 

with analysis. 
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